RTI(h)(s)**Health Solutions**

Limitations in Reporting "Benefit-Risk" **Across Therapeutic Areas in Medical Device Literature**

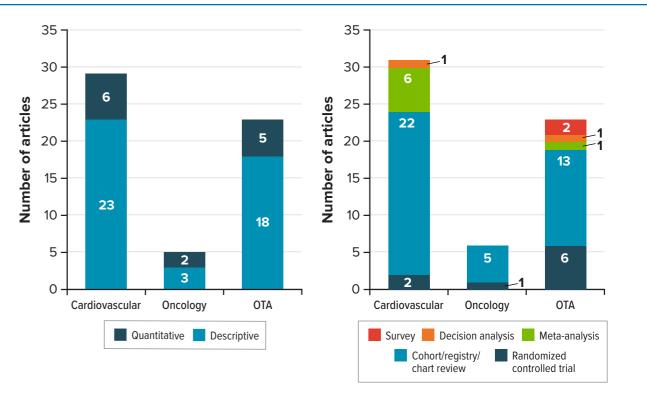
WS Krueger,¹ JC Young,² K Hollis,¹ AB Hauber,¹ A Gilsenan,¹ ME Ritchey¹

¹RTI Health Solutions, Research Triangle Park, NC, United States ²Gillings School of Public Health, UNC-Chapel Hill, Chapel Hill, NC, United States

BACKGROUND

- Throughout a medical product's life cycle, decisions about its use are evaluated as a balance between patients' anticipated benefits and risks.
- Both qualitative and quantitative methodologies have been developed to assess benefit-risk (Table 1); however, reporting of benefit-risk assessments by medical device researchers can often be vague.

Table 1. Benefit-Risk Methodologies Identified by the Innovative Medicines Initiative (IMI) Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) Benefit-Risk Group¹


Methodology	Brief Description	Example		
Descriptive framework	Qualitative or semiquantitative guidelines to conduct benefit-risk assessment	FDA BRF, PrOACT-URL, BRAT		
Quantitative framework	Quantitative methods of trading risks and benefits based on mathematical principles	MCDA		
Metric indices	Indices used to define thresholds (cut points), health utility, or formal trade-offs between benefits and risks	Number needed to harm, quality-adjusted life-years, incremental net health benefit		
Estimation	Infer benefit-risk tradeoff based on metrics, considering evidence, data, and assumptions	Indirect treatment comparison		
Utility survey	Elicit utilities and preference values (not a formal benefit-risk assessment)	Discrete-choice experiment, conjoint analysis		

BRAT = Benefit-Risk Action Team; BRF = benefit-risk framework; FDA = Food and Drug Administration, MCDA = multi-criteria decision analysis; PrOACT-URL = Problems, Objectives, Alternatives, Consequences, Trade-offs, Uncertainty, Risk attitudes, and Linked decisions.

Benefit-Risk Assessments

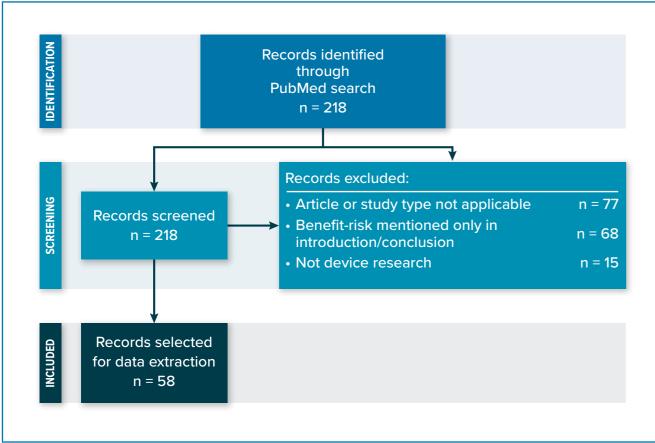
- Most abstracts (n = 44, 76%) used descriptive frameworks; 13 (22%) were quantitative (Figure 2 and Table 2). (The framework could not be determined for one abstract.)
 - Two of the 6 oncology studies (33%) described quantitative frameworks, compared with 5 of the 23 OTA studies (22%) and 6 of the 29 CV studies (21%).
- Five oncology studies (83%) used data from registries, cohorts, or chart reviews, which was more frequent than in CV (n = 21, 72%) and OTA (n = 13, 57%) studies. No oncology studies claiming to assess benefit-risk were randomized trials, while 20% of CV and 10% of OTA studies used randomized designs (Figure 2).
- The publication's target audience was most often clinicians and regulators for CV (66%) and OTA (57%) studies; for oncology studies, the audience was most often clinicians only (67%) (Figure 3).

Figure 2. Therapeutic Area and Type of Benefit-Risk Analysis Reported or Inferred (Left) and Therapeutic Area and Study Type (Right)

Table 2. Specific Frameworks by Therapeutic Area

	Framework	Total	CV	Oncology	OTAs
Descriptive frameworks	Unspecified framework	40	20	3	17
	PrOACT-URL	3	2	0	1
	ASF	1	1	0	0
Descriptive frameworks	Net clinical benefit	5	3	1	1
	MCDA	4	2	1	1
	Markov	2	0	0	2
	BLRA	1	0	0	1
	Decision tree	1	1	0	0
Unknown	Unknown	1	0	1	0

OBJECTIVE


This literature review aimed to evaluate the medical device literature and evaluate

how benefit-risk is reported across therapeutic areas.

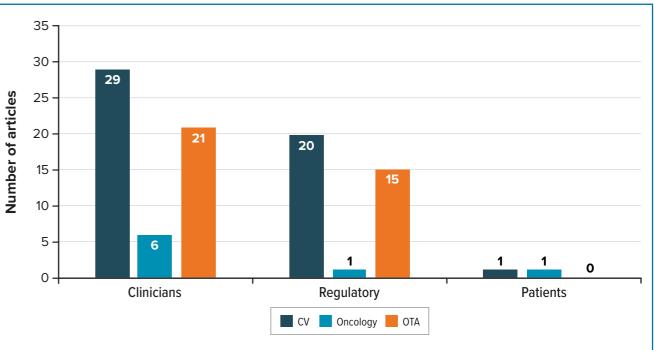
METHODS

- Using MeSH terms for a broad capture, PubMed was searched for English-language articles published between 2008 and 2017 in which IMI-PROTECT benefit-risk methodologies were employed for medical devices.
- Titles and abstracts were reviewed to identify relevant articles.
- For the articles selected for inclusion in the review, data were extracted from the abstract only.
- We analyzed the methodological framework used to describe differences in approaches across therapeutic areas.

RESULTS

Figure 1. PRISMA Flow Diagram for Article Screening

Therapeutic Areas


 Predominant therapeutic areas for the 58 selected articles were cardiovascular (CV, 50%) and oncology (10%). Less common other therapeutic areas (OTAs, 40%) included injury/poisoning/procedural complications (n = 4), endocrine disorders (n = 3), eye disorders (n = 3), nervous system disorders (n = 2), respiratory/thoracic/mediastinal disorders (n = 2), surgical/medical procedures (n = 2), musculoskeletal/connective tissue disorders (n = 2), gastrointestinal diseases (n = 1), blood/lymphatic system (n = 1), renal/urinary disorders (n = 1), and metabolism/nutrition disorders (n = 1).

Determining Methodology

- Due to the limited details described within the abstracts, benefit-risk methodology (e.g., PrOACT-URL, MCDA) had to be inferred for most of the abstracts (91%) or could not be determined (2%).
 - Of the 4 abstracts that sufficiently described methodology to define the benefit-risk framework, 3 were CV studies (10% of the 29 selected CV studies) and 1 was an

ASF = Ashby and Smith framework; BLRA = benefit-less-risk analysis.

Figure 3. Therapeutic Area and Target Audience

DISCUSSION

- This review of published articles' abstracts suggests that the term benefit-risk is used broadly across medical device publications, with little context given to methodology.
- Oncology studies most often employed quantitative frameworks.
- CV studies provided more study design information, were more often randomized (vs. nonrandomized) studies, and more often employed descriptive methodologies.

CONCLUSIONS

- The lack of detail included in article abstracts limits clarity regarding which benefitrisk assessment was conducted.
- Differences observed across therapeutic areas further limit interpretation.
- There is a need for improved standardization in reporting benefit-risk assessments for medical devices overall and across therapeutic areas to facilitate readers' understanding and interpretation of results.

REFERENCES

1. IMI-Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) Benefit-Risk Website, Methods Classification. Available at: http://protectbenefitrisk.eu/methods.html. Accessed May 31, 2018.

OTA study (4% of all OTA studies).

- No oncology study sufficiently described the benefit-risk methodology; the framework was inferred for all oncology studies.

CONTACT INFORMATION

Mary Beth Ritchey, PhD Director, Epidemiology Phone: +1.919.541.1285 E-mail: mritchey@rti.org

RTI Health Solutions 200 Park Offices Drive Research Triangle Park, NC 27709

The power of **knowledge**. The value of understanding.

Presented at: 34th International Conference on Pharmacoepidemiology & Therapeutic Risk Management; August 22-26, 2018; Prague, Czech Republic