
Other Observations

• For the frequentist GLIMMIX approach, the impact on the 
results based on the estimation method and degrees of 
freedom calculation method was also assessed:

– Although Quadrature and Laplace estimation methods are 
recommended for binomial data,7 the models using these 
methods often did not converge, and when they did, 
produced odds ratio estimates that were consistently higher 
than the odds ratio estimates obtained when RSPL 
estimation or Bayesian methods were used. The odds ratio 
estimates were closer as the sample size of individual trials 
increased (data not shown).

– Kenward-Roger or residual methods for calculating 
denominator degrees of freedom produced consistently 
wider confi dence intervals than method=None. The 
confi dence intervals narrowed as the individual trial sample 
size increased (data not shown).

CONCLUSIONS

• The odds ratio point estimates for indirect comparisons in 
meta-analyses with small studies should be viewed with 
caution as differences may occur depending on methods 
used, assumptions, and underlying data patterns. The 
magnitude of difference depends not only on the various 
estimation approaches but also on (1) the actual differences 
between the rates of active treatments and placebo and (2) 
the relative sample sizes between the studies.

• When the placebo rate is the same across the individual 
studies, it is necessary to treat the trial effect as fi xed in the 
GLMMIX approach; thus it is equivalent to the AIC method.

• Treating the trial effect as fi xed will produce odds ratio 
estimates closest to the simple ratio of results from the two 
trials; the rationale and justifi cation for using a random-
effects method may not be supported when only two 
studies are available.

• With a limited network, a random-effects model using 
GLIMMIX or WinBUGS can produce different odds ratios 
estimates. As sample size increases within the individual 
studies, these estimates should become closer.

• The joint ISPOR-AMCP-NPC task force recently published a 
questionnaire to assess the relevance and credibility of 
indirect treatment comparisons.8  The authors recommend 
using a random-effects model whenever possible but 
concede that it may not be feasible in certain situations 
such as our example network.  In this case, a fi xed-effect 
model is reasonable, but the authors prefer a random-
effects model where one assumes a value for the study-
level heterogeneity (i.e., random study effect).

• The limitations of meta-analyses with a small number of 
studies are well-documented. Researchers participating in 
indirect-comparison meta-analyses under these conditions 
should understand the differences in results when using 
the various methods and how interpretation of results is 
affected.
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Practical Issues When 
Conducting Network Meta-Analyses 
With a Limited Number of Studies

Dawn Odom, Costel Chirila, Beth Sherrill, Jianmin Wang, Bintu Sherif
RTI Health Solutions, Research Triangle Park, NC, United States

OBJECTIVES

• Meta-analysis, or the synthesis of results across multiple 
trials, is being conducted extensively in part due to 
requirements from health care decision making agencies. 
Often trials are designed to compare the experimental drug 
against placebo or best supportive care. In these cases, 
health care agencies may require as part of their review 
process a comparison against an active comparator, which 
can be accomplished using indirect comparison meta-
analysis methods.

• Indirect comparison meta-analysis techniques continue to 
develop, and software now exists to model networks of 
randomized clinical trials (RCTs) using Bayesian or 
frequentist approaches with trial effects treated as fi xed or 
random. The anchored indirect [treatment] comparison (AIC) 
method, which is not model based, is also suitable for 
making these treatment comparisons.

• Many meta-analyses are performed with a very limited 
number of studies. In a review of thousands of meta-
analyses, Davey et al. (2011)1 reported that over one-third 
included the minimum requirement of two studies only, and 
just under three-quarters contained fi ve or fewer studies. 
However, practical issues emerge, particularly when the 
network comprises a limited number of studies.2-4

• Our goal was to investigate the performance and 
interpretation of different indirect comparison meta-analysis 
methods when few studies are available. Of special interest 
is the situation in which a star network contains only one 
trial for each given treatment comparison.

METHODS

• A star network based on two trials anchored by placebo was 
created for a binary endpoint (Figure 1).

• Using this network, the odds ratio from Trial #1 (Drug A vs. 
placebo) can be compared with the odds ratio from Trial #2 
(Drug B vs. placebo) to create an indirect comparison of 
Drug A versus Drug B.

• Sample data were created for nine different scenarios in the 
network by varying sample size and placebo response (see 
Table 1).

Figure 2. Indirect Comparison Odds Ratios of Drug A Versus Drug B

a. Same Sample Size Across Scenarios (1-3)

b. Small Difference in Sample Sizes Across Scenarios (4-6)

c. Large Difference in Sample Sizes Across Scenarios (7-9)

a A random effect for trial was not estimable and instead, a fi xed effect for trial was used.

Figure 1. A Star Network Comprising Two Trials

PlaceboPlaceboPlacebo

Drug ADrug ADrug A

Drug BDrug BDrug B

Trial 1

Trial 2

Table 1. Number of Events per Trial and per Drug, With Corresponding 
Odds Ratio, for Each Scenario

Scenario
Trial 1 Trial 2

Drug A Placebo OR Drug B Placebo OR

1. Equal placebo 
response, same sample 
size

85/100
(85%)

45/100
(45%) 6.93 70/100

(70%)
45/100
(45%) 2.85

2. Small difference 
in placebo response, 
same sample size

85/100
(85%)

45/100
(45%) 6.93 70/100

(70%)
37/100
(37%) 3.97

3. Large difference 
in placebo response, 
same sample size 

85/100
(85%)

45/100
(45%) 6.93 70/100

(70%)
32/100
(32%) 4.96

4. Equal placebo 
response, small 
difference in sample 
size, trial #2 

85/100
(85%)

45/100
(45%) 6.93 42/60

(70%)
27/60
(45%) 2.85

5. Small difference in 
placebo response, small 
difference in size, trial #2 

85/100
(85%)

45/100
(45%) 6.93 42/60

(70%)
22/60
(37%) 4.03

6. Large difference in 
placebo response, small 
difference in sample 
size, trial #2 

85/100
(85%)

45/100
(45%) 6.93 42/60

(70%)
19/60
(32%) 5.04

7. Equal placebo 
response, large 
difference in sample 
size, trial #2 

85/100
(85%)

45/100
(45%) 6.93 140/200

(70%)
90/200
(45%) 2.85

8. Small difference in 
placebo response, large 
difference in sample 
size, trial #2 

85/100
(85%)

45/100
(45%) 6.93 140/200

(70%)
74/200
(37%) 3.97

9. Large difference in 
placebo response, large 
difference in sample 
size trial #2

85/100
(85%)

45/100
(45%) 6.93 140/200

(70%)
64/200
(32%) 4.96

OR = odds ratio.

Table 2. Estimated Indirect Comparison Odds Ratio (95% Confi dence 
Interval) of Drug A Versus Drug B for Each Scenario

Scenario

Analysis Method

AIC
WinBUGS 
(Bayesian 

GLMM)

GLIMMIX
(Frequentist 

GLMM)

1. Equal placebo 
response, same sample 
size

2.429
(0.996-5.922)

2.471
(1.075-5.892)

2.429a

(0.996-5.922)

2. Small difference in 
placebo response, same 
sample size

1.743
(0.711-4.274)

1.872
(0.763-4.505)

2.240
(1.059-4.740)

3. Large difference in 
placebo response, same 
sample size 

1.397
(0.566-3.447)

1.524
(0.621-3.813)

1.632
(0.698-3.813)

4. Equal placebo 
response, small 
difference in sample 
size, trial #2 

2.429
(0.885-6.668)

2.441
(0.928-6.538)

2.429a

(0.885-6.668)

5. Small difference in 
placebo response, small 
difference in size, trial #2 

1.719
(0.621-4.758)

1.873
(0.668-4.872)

2.374
(1.071-5.264)

6. Large difference in 
placebo response, small 
difference in sample 
size, trial #2 

1.376
(0.492-3.846)

1.510
(0.533-4.325)

1.688
(0.658-4.333)

7. Equal placebo 
response, large 
difference in sample 
size, trial #2 

2.429
(1.101-5.356)

2.463
(1.188-5.386)

2.429a

(1.101-5.356)

8. Small difference in 
placebo response, large 
difference in sample 
size, trial #2 

1.743
(0.788-3.856)

1.913
(0.861-4.156)

2.101
(1.038-4.252)

9. Large difference in 
placebo response, large 
difference in sample size 
trial #2

1.397
(0.629-3.101)

1.511
(0.682-3.417)

1.566
(0.729-3.368)

a A random effect for trial was not estimable and instead, a fi xed effect for trial was used.

• For each scenario, indirect-comparison meta-analyses 
examining the odds ratio of drug A versus drug B were 
produced using the following three methods:

– Non-model based method

1. AIC method5,6: The AIC method is equivalent to a 
generalized linear model with a logit link in which treatment 
and trial are fi xed effects.

– Model-based methods: For a binary endpoint that follows a 
binomial distribution (logit link) with a fi xed effect for 
treatment and a random effect for trial. Note that the 
Bayesian approach and the frequentist approach both use 
the same fundamental statistical model, which is a 
generalized linear mixed model (GLMM). The primary 
difference is in the approach to parameter estimation.

2. Bayesian approach using WinBUGS software (Bayesian 
inference using Gibbs sampling): Noninformative prior 
distributions used with 10,000 burn-in simulations followed 
by 10,000 simulations for estimation; model was thinned by 
a factor of 5.

3. Frequentist approach using PROC GLIMMIX in SAS 
software (version 9.3, SAS Institute, Cary, North Carolina, 
USA): A no-intercept model with logit link, estimation 
method=RSPL, and degrees of freedom method=NONE. 
Note that if a random effect for trial was not estimable in a 
model, then it was treated as a fi xed effect instead.

• The odds ratio estimates for the indirect comparisons are 
generally not expected to be equal in the AIC and model-
based methods, since the AIC method assumes a fi xed 
effect for trial and the model-based methods specify a 
random effect for trial.

RESULTS

• Estimated odds ratios from the indirect comparison (A vs. 
B) were examined to identify patterns of performance of the 
three methods across the nine scenarios (see Table 2 and 
Figure 2a-2c).

General Observations

Scenarios 1, 4, 7: Placebo Response Rates Were the Same 
across the Two Studies

• The GLIMMIX approach could not estimate a random effect 
for trial, and it was necessary to run a model with a fi xed 
effect for trial. As expected, GLIMMIX and AIC results were 
identical since the AIC method is equivalent to the 
GLIMMIX approach.

• The WinBUGS model (with random effect for trial) 
produced odds ratios very similar to those produced by the 
GLIMMIX and AIC methods.

• The confi dence intervals do not indicate a signifi cant 
difference across the methods.

Scenarios 2, 3, 5, 6, 8, 9: Placebo Response Rates Were Not 
the Same Across the Two Studies

• The GLIMMIX approach produced consistently higher odds 
ratio estimates than the WinBUGS approach, which in turn 
produced consistently higher odds ratio estimates than the 
AIC method. Again, the confi dence intervals overlapped 
between all three methods, indicating that they are not 
statistically different.

• Before conducting the analyses, we expected that the 
GLIMMIX and WinBUGS approaches would produce similar 
odds ratio estimates because they were based on the same 
fundamental model. However, slight differences in results 
were noted between the two approaches:

– When the difference between the placebo response rates 
was “small” (45% vs. 37%), the odds ratio from the 
GLIMMIX approach demonstrated the greatest difference 
from the odds ratio produced by the WinBUGS approach 
(e.g., scenario 2: WinBUGS OR=1.87, GLIMMIX OR=2.24), 
compared with when the difference between the placebo 
response rates was “large” (45% vs 32%) (e.g., scenario 3: 
WinBUGS OR=1.52, GLIMMIX OR=1.63).

Scenarios 2, 5, 8: Placebo Response Rates Were Not the Same 
across the Two Studies, and the Sample Sizes Were Different

• When placebo response rates and sample sizes are 
different between studies, the GLIMMIX approach is more 
affected than the WinBUGS approach by fl uctuations in 
sample sizes (e.g., scenario 5: WinBUGS OR=1.87, GLIMMIX 
OR=2.37; vs. scenario 8: WinBUGS OR=1.91 GLIMMIX 
OR=2.10).


